全国服务热线: 13590461208
企业新闻

青海省屋面安装光伏面板承载力检测服务及步骤

发布时间:2023-12-20        浏览次数:5        返回列表
前言:屋面安装光伏面板承载力检测机构,屋面安装光伏面板承载力检测标准
青海省屋面安装光伏面板承载力检测服务及步骤

青海省屋面安装光伏面板承载力检测服务及步骤

屋顶光伏安全检测鉴定报告单位

  单独设置于屋面之上的光伏系统,以下简称为屋面光伏系统,其面板称为屋面光伏面板,只具有发电功能,不作为围护结构的面板;需要围护功能时须另设密封 的采光顶或幕墙。新建工程的屋面光伏系统一般是与主体建筑同时设计,同时施工,同时验收,屋面光伏系统本身就是建筑的一个有机组成部分。所以带屋面光伏系 统的建筑是光伏一体化建筑。

 但是这种光伏系统的面板只具有发电功能,不具备建筑围护功能,需要另设具有围护功能的屋面或采光顶,因而形成“两层皮”,所以 它属于光伏一体化建筑中的分离式系统。

  这种分离式光伏系统的光伏面板只发电,无须考虑密封要求,构造简单;施工容易,更换方便。由于另有承重的屋面系统, 屋面光伏系统破损后不会产生严重的安全问题,所以安全度可以比通常的屋面稍低,用料较为节省

  (一)、鉴定的目的

  据委托方介绍,委托方部分重型仪器设备放置于该房屋各层,由于仪器设备自身荷载较大且运行时产生较大振动,为为查明该房屋结构现状是否安全,承载力性能是否满足

  (二)鉴定内容

  (1)、普查

  (a)、对房屋结构类型、基础形式、建筑层数、房屋地址、建造年代、房屋朝向、房屋装修概况及房屋用途进行现场调查;

  (b)、对房屋整体的使用状况、荷载分布进行检查;

  (c)、对该房屋现有上部结构的建筑及结构布置、构件尺寸、层高等情况进行现场测量,绘制各层建筑、结构平面示意图。

2020_09_14_10_28_IMG_0230.JPG

 1.工程概况

某柴油机股份有限公司金工车间建于1995年,房屋为钢筋混凝土排架结构,柱距为6m,连续三个18m跨,两边低跨,柱顶标高为7.7m,中间高跨,柱顶标高为10.6m。车间总长19个柱距,为114.48m,总宽为54.48m,建筑面积为6236.87m?2。钢筋混凝土杯形独立柱基,柱为钢筋混凝土矩形侧向圆孔空心柱,5T“T”形钢筋混凝土吊车梁,折线型钢筋混凝土预制屋架,北跨屋架下弦设有0.5T悬挂吊车两台,1500×6000钢筋混凝土预制大型屋面板,二毡三油一砂卷材防水屋面。

2.施工、使用情况

根据施工资料记载:所有屋架和屋面板均为现场预制。由于当时气温较低、施工工期紧,为缩短工期,尽快提高混凝土强度,采用了氯化钙作防冻剂。当时测得屋面板混凝土强度按龄期推算,28d强度为314.2Kg/cm?2,仅达到设计强度400#的78.5%,因此采用添加剂施工未达预期目的。鉴于G725图集大型屋面板混凝土强度为300#,大肋主筋?12改为?16,即认为屋面板承载力满足使用要求。另有一批屋面板17d混凝土强度只达187.2Kg/cm?2,一致认为强度偏低,由施工单位现场做了一块板的荷载试压,加压至130Kg/cm?2,符合设计标准荷载,没有继续加压,即吊装使用。屋面没有全部找平,仅在板缝及高差大的地方进行了局部找平。

北跨屋架下弦原设计有2台0.5T的固定悬挂吊车,后因厂方工艺和生产规模的扩大,将原来的2台0.5T悬挂吊车更换成12台0.5T的有轨吊车,轨道安装在屋架下弦杠上,严重超载使用。

3.现场查勘情况

3.1基础。

对柱周围混凝土散水及土层进行外观检查,基础基本稳定,无不均匀沉降及滑移现象。用水准仪对柱进行水准测量,柱基高差小于5mm。室内桁车运行正常。

3.2柱。仅④轴南柱牛腿北侧局部混凝土保护层厚度不足,钢筋外露锈蚀,混凝土局部剥落,其余柱无裂缝和损坏。柱垂直度符合要求。

3.3吊车梁。

均保持完好,桁车运行正常。

3.4屋架。

经检查,北跨所有屋架中约有70%屋架下弦杆产生垂直裂缝,裂缝绝大多数分布于北侧半跨(有悬挂吊车一侧),大多数裂缝尚未贯穿,裂缝宽度在0.10~0.24mm之间,未超过规范允许范围。有50%的屋架在悬挂吊车轨道夹板位置下弦杆侧面混凝土保护层剥落,部分箍筋或主筋外露、锈蚀,混凝土剥落深度在1.5~4.5cm之间。由于超载,12台0.5T的吊车已拆除,但轨道仍存在。详细情况见表1。

3.5屋面板。

北跨共240块大型屋面板,大多数屋面板混凝土浇制时不密实,混凝土严重碳化钢筋锈蚀起皮。经统计,板面出现裂缝的有38块,约占16%,板肋断裂的有11块,约占5%,板面起洞的有12块,约占5%。详细情况见表2。

3.6结构布置和支撑系统。

结构布置和支撑系统符合设计要求,支撑系统杆件基本无损坏。

3.7围护结构。

围护墙体无裂缝、倾斜,承载力能满足使用要求。但墙体局部砖风化,粉刷层老化,局部剥落;木门、木窗失去使用功能;屋面二毡三油防水层老化,局部破损,屋面局部渗漏;地坪严重起鼓、损坏。

4.构件检测

4.1柱(混凝土设计标号为300#)。

按30%比例抽样,用超声回弹综合法推定柱混凝土强度,用TH-1混凝土碳化深度测量仪测量混凝土碳化深度。

4.2屋架(混凝土设计标号为250#)。

按30%比例抽样,用超声回弹综合法推定屋架混凝土强度,用TH-1混凝土碳化深度测量仪测量混凝土碳化深度,用水准仪测量屋架下弦现有起拱量(屋架下弦矢高)。其值见表4。

4.3屋面板(混凝土设计标号为400#)。

屋面板设计厚度为30mm,用游标卡尺实测板面有洞处板实际平均厚度为28mm。由于板面较薄,刚度偏低,板面混凝土不密实,所以无法用超声回弹综合法推定混凝土强度。故采用取芯法在屋面板搁置端较宽板肋处取芯进行试压,芯样为6块,强度见表5。

用TH-1混凝土碳化深度测量仪测量碳化深度,大部分板混凝土已严重碳化,板底面大碳化深度为13mm,板表面大碳化深度为22mm。对板肋露筋处(共8处)钢筋锈蚀情况进行检测(用游标卡尺),平均钢筋截面损失32%,现剩余钢筋平均直径为?13.6mm。

2020_09_14_11_00_IMG_0240.JPG

1.2 设计依据

  组件尺寸为1640 mm×990 mm×50 mm;组件重量为20 kg;大风速为30 m/s。安装方式:组件安装采用纵向2×10阵列安装,20块组件为一个单元;采用固定倾角钢支架,支架倾角为33°。

  2 支架型材强度计算

  2.1 设计取值

  1)假设为一般地方中大的荷重,采用固定荷载G和暴风雨产生的风压荷载W的短期复合荷重。

  2)根据气象资料,本计算大风速设定为30 m/s。

  3)对于混凝土屋面,采用佳倾角33°安装的系统需要考虑足够的配重,确保组件方阵的稳定可靠。

  4)屋面高度为10 m。2.2 承受荷载2.2.1 固定荷载G

  以2×10阵列为一个单元进行计算,则光伏

  如何实现并网光伏系统的整体优化设计从而降低发电成本是光伏发电平价上网的核心问题。光伏系统整体优化设计主要从组件选型、安装倾角优化、环境匹配等方面加以优化,从而减少系统发电损失。据测算电站由于组件选型、倾角设计、环境因素等方面的设计不当造成的损耗约占总发电量的20%,具体损耗比例如图2所示。规划建设了光伏组件户外优化测试系统(图3),该

  系统目前已具备多种户外实证性测试功能(图4),可通过长期实时监测组件发电性能,同步搜集天气环境数据,比较不同类型电池的发电能力,评估安装倾角及跟踪方案对发电量的影响。

深圳中正建筑技术有限公司
  • 地址:深圳市龙岗区南湾街道丹竹头社区宝雅路23号三楼
  • 电话:15813888182
  • 手机:13590461208
  • 联系人:银经理
推荐产品
信息搜索
 
建筑技术新闻